窑炉

中国科学院工程热物理研究所燃煤水泥窑炉低

发布时间:2022/8/17 18:37:50   

为了应对水泥工业越来越严苛的排放标准,中国科学院工程热物理研究所对现行以及近年来新涌现的低NOx排放控制技术进行梳理总结,进一步了解水泥行业低NOx排放控制技术的研发现状,为水泥企业选择适合的低氮脱硝技术提供参考,为水泥工业实现超洁净绿色生产提供技术储备。

作者

石朝亭1,2,蔡军1,2,3,任强强1,2,3,吾慧星1,2,马海军4

作者单位

1.中国科学院工程热物理研究所,北京;2.中国科学院大学,北京;3.中国科学院洁净能源创新研究院,辽宁大连;4.宁夏天纵泓光余热发电技术股份有限公司,宁夏银川

摘要

我国是水泥生产和消费大国,水泥行业已成为我国继热力发电和交通运输之后的第三大NOx排放源,是引起我国雾霾天气的主要成因之一。随着水泥工业NOx排放标准的不断提高,燃煤水泥窑炉低NOx排放控制技术的发展越来越受到重视。为清晰了解水泥行业常见低NOx排放控制技术的优化方向和新型低NOx排放控制技术的发展现状,为水泥工业实现超洁净绿色生产提供技术储备,笔者梳理总结了燃煤水泥窑炉常见低NOx排放控制技术以及新型低NOx排放控制技术。围绕燃煤水泥窑炉常见低氮脱硝技术,阐述了燃烧前、燃烧中以及燃烧后等各种低NOx排放控制技术的降氮原理、特点以及应用现状,并指出了这些技术在实际应用中面临的问题;同时介绍了燃烧前、中、后等各种低NOx排放控制技术的组合应用。重点介绍了近年来新涌现出的以两步还原法为代表且具有潜力的低氮脱硝技术,论述其降氮原理及研究发展现状,对比总结了水泥行业常见低NOx排放控制技术以及新型低NOx排放控制技术的脱硝效率、研究和应用现状。面对日益严峻的减排形式,水泥行业深度脱硝工作的开展势在必行。结合常见低NOx排放控制技术的减排原理、优势以及存在的问题,建议水泥行业可采用燃烧中与燃烧后各种低氮控制技术的组合应用方案,以此达到降本增效的目的,并具体提出了水泥行业现有生产线以及新建生产线可行的组合应用方案。考虑到各种新型低NOx排放控制技术的降氮原理和发展现状,笔者对水泥行业低氮脱硝技术未来的研究和努力方向进行展望,认为未来水泥行业低NOx排放控制技术的发展应注重提高还原氛围下的碳还原能力,以激发碳还原能力为核心进行现有技术的优化以及新技术的探索,同时应考虑到与低氮燃烧技术相匹配的精准自动化、智能化测控设备的应用,以全方位监测、反馈系统的相关指标,更好地发挥低NOx排放控制技术的降氮脱硝效果。

1水泥行业常见低NOx排放控制技术

1.1燃烧前处理方法

对于水泥生产,燃烧前处理大致可分为燃料处理、空气处理、生料处理3种方法。总体来看,燃烧前处理方法虽然可从源头上减少NOx的产生,但在水泥生产中的降氮脱硝能力有限。

1.1.1燃料处理

燃料脱氮由于成本高、技术难度大、工艺不成熟等原因在水泥行业尚无应用。在低氮燃料方面,选择含氮量低于煤粉的天然气或煤油作为水泥生产的燃料,可使NOx排放浓度降低60%,但以油或气代替煤粉进行水泥生产并不适应我国水泥产量大的现状以及富煤贫油少气的能源结构。一般煤燃烧过程中NOx排放量随含氮量增加而增加,因而可以选择含氮量低的煤种,如褐煤。

1.1.2空气处理

对于空气处理,研究发现将生活污泥烘干尾气与空气混合后作为燃煤载气,可以减少NOx排放,其原因在于生活污泥烘干尾气中的碳氢化合物对NOx的还原作用[8]。但烘干尾气比例过大会影响燃烧稳定性;另外,如果直接运用水泥窑系统中的热源,如熟料冷却风对污泥进行烘干,则对水泥厂与污泥处理厂的位置有进一步要求,需要综合考虑成本和收益。

1.1.3生料处理

在生料中添加矿化剂可以提高生料的易烧性,使回转窑煅烧温度降低,从而降低热力型NOx的产生,可降低5%~10%,在一些特殊情况下可降低30%。降低煅烧温度有可能使熟料质量下降[5]。

1.2燃烧中控制方法

燃烧中控制方法通过合理组织燃烧来降低燃烧过程NOx排放量:一方面通过合理组织燃烧降低回转窑用煤比例和燃烧温度,进而减少回转窑内NOx的产生;另一方面则通过合理组织燃烧提高分解炉对窑尾烟气中NOx的还原能力,同时抑制分解炉内部燃烧过程中NOx的生成。

1.2.1回转窑中NOx控制

1)低氮燃烧器

目前国内水泥行业多使用德国洪堡公司的PYRO-JET型、丹麦史密斯Duoflex型以及法国Novaflam型低氮燃烧器,其中PYRO-JET型低氮燃烧器在我国水泥行业使用时间较长,范围较广。PYRO-JET型低氮燃烧器结构原理如图1所示。一次风包括高速直流风、低速涡流风以及中心分风,多风道设计可使低氮燃烧器一次风量降低至5%~6%。外围高速直流风对高温二次风具有很强的卷吸作用,可将燃料和二次风均匀分布至火焰下游,拉长火焰进而降低燃烧温度,并减少空气在高温区的停留时间,从而降低热力型NOx的产生;靠近中心部位的低速涡流风可在燃烧器顶部形成低压区,使部分燃料回流到一次风量较少的火焰核心区进行燃烧,进一步减少NOx产生量。低氮燃烧器目前的脱硝效率在10%~15%[9],多通道设计可使各通道流量协同调节进而形成大推力、大速差的运行特点,同时对燃料的适应性也更强,是低氮燃烧器独有的优势。

图1PYRO-JET型低氮燃烧器结构原理

2)高固气比悬浮预热分解技术

该技术通过对悬浮预热器和分解炉进行高固气比设计,以达到NOx减排的目的。根据徐德龙院士对固气比与热利用效率关系的研究,当固气比低于3.6时,悬浮预热器热效率随着固气比增加而增加;生料在分解炉中的最终分解率随其在分解炉中停留时间的延长而增大。高固气比悬浮预热分解技术流程如图2(C为旋风分离器,下标数字为级数)所示。

图2高固气比悬浮预热分解技术流程

3)预烧成工艺

根据回转窑内的传热计算分析,回转窑~℃温度区间(生料进一步预热分解)内换热量约为kJ/kg(以物料计,下同),在~℃温度区间(固相反应)内换热量仅为43.1kJ/kg,回转窑窑尾的换热需求远大于窑头,但是窑尾烟气温度低且对流换热能力差,其综合换热效率低。水泥预烧成工艺采用传热效率极高的悬浮煅烧方法来优化分解炉,使物料在进入回转窑前就全部分解,并进一步加热物料至℃左右。回转窑内仅进行熟料烧成的固相反应,其用煤比例理论上可以降至20%,进而达到与高固气比悬浮预热分解技术相似的降氮脱硝效果。二级水泥预烧成工艺系统示意如图3所示。

图3二级预烧成工艺示意

1.2.2分解炉中NOx控制

目前水泥行业采用的分解炉炉型有30多种,具有较低NOx排放的分解炉大多采用分级燃烧的设计原理,但由于外形尺寸的区别,不同分解炉的分级燃烧设计方案有所不同,还原区位置也有所差异,常见的还原区位置有窑尾烟室、烟室上升烟道以及分解炉锥部等。DD型分解炉及其派生炉型由于结构设计所具有的喷腾效应使其在脱氮以及煤粉燃烧方面优势突出,因而在我国具有较为广泛的应用。DD型分解炉(图4)分别采用空气分级、燃料分级、空气/燃料分级示意,图中灰色区域为还原区,箭头方向及其所处位置表示不同物料的入口/出口相对方向和位置。分级燃烧技术已在国内外水泥行业普遍采用,虽然能够在一定程度上降低NOx排放量,但易影响分解炉原有流场,进而影响系统的稳定运行。同时,为保证还原区的低氧氛围,操作人员需要严格把控分风、分煤比例以及窑尾烟气的氧浓度,当窑尾烟气中氧浓度大于3%时,分级燃烧将会失去减排效果[18],这对操作人员经验和测控系统的精准控制提出了更高要求。对于分级燃烧学术方面的研究,大多借助小型试验和数值模拟的方法,从炉型、工艺参数、燃料类型等角度展开。

图4DD型分解炉分级燃烧示意

1.3燃烧后处理方法

燃烧后处理方法即指烟气脱硝技术。根据反映体系的状态,烟气脱硝技术可分为干法和湿法两大类。在国内水泥行业,湿法烟气脱硝技术由于脱硝废液无法处理、二次污染以及需要大量氧化剂等原因鲜少采用。干法烟气脱硝技术中,电子束照射法和脉冲电晕等离子体法对烟气的处理量小,在水泥行业尚无应用;而吸附法目前仅限于实验室研究,尚未工业化应用;选择性非催化还原(SNCR)技术在水泥行业的应用较为普遍,而选择性催化还原(SCR)技术在国内水泥行业的应用还处于中试试验、个别项目示范和积累运行数据与经验的阶段。

1.4联合脱硝技术

兼顾排放水平以及经济效益,水泥行业常采用多种低氮燃烧技术相结合的方法来达到降本增效的目的,其中以高效再燃脱硝技术和热碳催化还原复合脱硝技术为代表。

1.4.1高效再燃脱硝技术

该技术结合了分级燃烧技术和SNCR技术,通过对分解炉(图5)区域划分来达到降氮脱硝的目的,图中阴影区域从下到上分别为主燃烧区、再燃区、燃尽区以及SNCR区,箭头方向及其所处位置表示不同物料的入口相对方向和位置。文献[56]总结了该技术的工业应用效果,虽然相对分级燃烧和SNCR技术单独使用时的脱硝效率更高,但不同规模生产线的NOx排放浓度差异较大。

图5高效再燃脱硝技术示意

1.4.2热碳催化还原复合脱硝技术

热碳催化还原复合脱硝技术结合了燃料处理以及分级燃烧技术,主要通过催化改性材料来提高碳的还原能力,其基本原理是在分解炉内形成还原区,并将催化改性材料和煤粉一起喷入该还原区中。在还原氛围以及催化条件下,煤热解产生的大量CO、碳氢化合物以及焦炭等还原性物质,与窑气中的NOx发生还原反应,同时抑制分解炉自身燃烧过程中NOx的生成。催化改性材料主要采用硅铝酸盐矿物和工业固体废弃物,不但可以起到脱硝作用,同时能够融入水泥熟料,实现水泥熟料的微量增产。据报道,该复合脱硝技术已经在t/d水泥生产线上完成了工业性试验,脱硝效率可以达到55%~70%。

2新涌现的低NOx排放控制技术

目前,我国水泥行业多采用低氮燃烧器、分级燃烧以及SNCR组合的脱硝策略,虽然NOx排放可以满足国家排放标准,但随着地方省市政府排放标准的不断提高,水泥企业仍面临巨大的环保压力。从发展趋势来看,水泥行业实现超低排放和绿色洁净生产是大势所趋。在此大背景下,近年来涌现出了一些新的脱硝技术。

2.1水泥窑O2/CO2燃烧技术

水泥窑O2/CO2燃烧技术将富含CO2的再循环烟气与O2混合,通过冷却熟料后成为高温的O2/CO2混合气体,参与回转窑或分解炉中煤粉的燃烧。该技术以CO2代替N2,从根本上消除了热力型NOx的产生,同时CO2还可以与煤焦反应生成大量的CO,对燃烧过程中产生的NOx进行还原。烟气再循环的方式增加了NOx的还原时间,理论上可以大幅度减少NOx的产生,但其对熟料烧成的影响仍在探索阶段,目前也只有欧洲进行了小试研究[60]。该燃烧方式所需的纯氧如果通过普通制氧技术获得,成本高昂,也有工艺提出通过化学链制氧方法以降低制氧成本。该技术兼具NOx减排以及CO2捕集的功能,不过其在水泥行业的应用总体上处于实验室研究阶段。

2.2以城市污泥实现水泥窑炉低氮排放技术

该技术是以城市污泥为原材料,以碳还原为关键核心的脱硝技术,其原理为:通过对城市污泥固废进行物理改性,将其转化为BPM高分子后作为还原NOx的载体,利用水泥生产过程中大量排放的CO2中的碳元素作为还原剂,以碳治氮,并将反应后多余的碳通过专利技术制成水煤气,输送到水泥回转窑中作为燃料使用。据报道,该技术目前仍处于工程中试试验阶段。

2.3两步还原法脱硝技术

随着低氮燃烧技术的发展,煤粉热解气化耦合燃烧超低氮燃烧技术越来越引起水泥行业的重视[62],由中国科学院工程热物理研究所循环流化床实验室团队提出的两步还原法就是煤粉热解气化耦合燃烧超低氮燃烧技术的一种。两步还原法是一种NOx综合控制方法,包括燃烧前燃料预热改性、燃烧中NOx的原位还原、以及燃烧后烟气中NOx的热碳还原,综合脱硝效率可达90%。该方法首先对燃料进行预处理,之后进入分解炉内燃烧,以减少燃料型NOx的产生,预处理后的燃料同时对回转窑烟气中的NOx进行还原。烟气进入预热烟道后,再利用热碳对NOx进一步还原。该方法工艺简单,对现有水泥工艺改动少,投资和运行成本与现有技术相比具有较大优势(不足SCR技术的1/10),目前正处于工程示范验证阶段。

3水泥行业低NOx排放控制技术

对比水泥行业低NOx排放控制技术,燃烧前处理方法可从源头上减少NOx的产生,但其脱硝能力有限,燃烧中控制方法中的低氮燃烧器、高固气比悬浮预热分解技术、分级燃烧技术,以及燃烧后控制方法中的SNCR技术在水泥行业的应用相对成熟,仍有很多学者在开展这些技术的优化研究,预烧成技术以及联合脱硝技术目前也已在实际工程中有所应用,而近年来新涌现出的低NOx控制技术则大多处于实验室或工程试验阶段。

4结语与展望

面对日益严峻的减排形式,水泥行业深度脱硝工作的开展势在必行。结合水泥行业各种低氮燃烧技术的特点、优势以及存在问题,对水泥行业低氮脱硝技术的使用以及未来研究提出几点建议:

1)燃烧中控制方法相对于燃烧前控制方法有更高的脱硝效率,而相对于燃烧后控制方法有更低的成本,因此燃烧中与燃烧后复合技术的使用可以在较低成本下达到较好的脱硝效果。目前,我国大多数水泥生产线都采用低氮燃烧器技术,对于现有需要改造的水泥生产线可采用“分级燃烧+SNCR”或“高效再燃脱硝技术”的组合应用方案进行改造,而对于新建的大规模生产线,为达到更高的排放标准,可采用“低氮燃烧器+SNCR+SCR”或“低氮燃烧器+分级燃烧+SNCR+SCR”组合应用方案进行建设。另外,“高固气比悬浮预热分解技术+SNCR”也是相对较好的选择。

2)未来水泥行业低氮脱硝技术的发展应注重提高还原氛围下的碳还原能力,以激发碳还原能力为核心进行现有技术的优化以及新技术的探索,同时应考虑到与低氮燃烧技术相匹配的精准自动化、智能化测控设备的应用。回转窑以及分解炉中的燃烧温度和氧浓度是影响水泥窑系统NOx排放的重要因素,低温低氧才能低氮,二者的精准测量以及实时反馈是NOx控制措施的重要依据。另外,局部燃烧温度和氧浓度的变化也会应影响NOx的排放,因此对于二者的测量需全方位进行,自动化和智能化的测控对于水泥行业低氮燃烧技术的应用十分重要。

引用格式

石朝亭,蔡军,任强强,等.燃煤水泥窑炉低NOx排放控制技术研究进展[J].洁净煤技术,,26(1):-.

SHIChaoting,CAIJun,RENQiangqiang,etal.ResearchprogressoflowNOxemissioncontroltechnologiesincoal-firedcementkilns[J].CleanCoalTechnology,,26(1):-.



转载请注明:http://www.aideyishus.com/lktp/1318.html

------分隔线----------------------------

热点文章

  • 没有热点文章

推荐文章

  • 没有推荐文章